SPELL - Nematode - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF, Christensen BM, Michalski ML. A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi. PLoS Negl Trop Dis, 2011.
PubMed ID 22180794
Short Description A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi.
GEO Record: N.A. Platform: N.A.
Download gene-centric, log2 transformed data: WBPaper00042241.bma.rs.csv
# of Conditions 14
Full Description 1316625150_help BACKGROUND: Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. METHODOLOGY/PRINCIPAL FINDINGS: Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. CONCLUSIONS/SIGNIFICANCE: Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of novel transcribed elements and splice variants.
Experimental Details:
RNASeq.brugia.WBStrain00041073.WBls:0000081.Unknown.WBbt:0007833.ERP000948.ERX026028
RNASeq.brugia.WBStrain00041073.WBls:0000083.Male.WBbt:0007833.ERP000948.ERX026029
RNASeq.brugia.WBStrain00041073.WBls:0000081.Unknown.WBbt:0007833.ERP000948.ERX026030
RNASeq.brugia.WBStrain00041073.WBls:0000662.Unknown.WBbt:0007833.ERP000948.ERX026031
RNASeq.brugia.WBStrain00041073.WBls:0000083.Female.WBbt:0007833.ERP000948.ERX026032
RNASeq.brugia.WBStrain00041073.WBls:0000082.Unknown.WBbt:0007833.ERP000948.ERX026033
RNASeq.brugia.WBStrain00041073.WBls:0000094.Male.WBbt:0007833.ERP000948.ERX026034
RNASeq.brugia.WBStrain00041073.WBls:0000094.Male.WBbt:0007833.ERP000948.ERX026035
RNASeq.brugia.WBStrain00041073.WBls:0000083.Female.WBbt:0007833.ERP000948.ERX026036
RNASeq.brugia.WBStrain00041073.WBls:0000083.Female.WBbt:0007833.ERP000948.ERX026037
RNASeq.brugia.WBStrain00041073.WBls:0000663.Unknown.WBbt:0007833.ERP000948.ERX026038
RNASeq.brugia.WBStrain00041073.WBls:0000082.Unknown.WBbt:0007833.ERP000948.ERX026039
RNASeq.brugia.WBStrain00041073.WBls:0000662.Unknown.WBbt:0007833.ERP000948.ERX026040
RNASeq.brugia.WBStrain00041073.WBls:0000082.Unknown.WBbt:0007833.ERP000948.ERX026041.
Tags 1316625150_help
Method: RNAseq, Species: Brugia malayi, Topic: developmental time course