SPELL - Nematode - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation Shen X, Ellis RE, Sakaki K, Kaufman RJ. Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet, 2005.
PubMed ID 16184190
Short Description Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans.
GEO Record: N.A. Platform: N.A.
Download gene-centric, log2 transformed data: WBPaper00026830.ce.mr.csv
# of Conditions 29
Full Description 1316625150_help The unfolded protein response (UPR) is an adaptive signaling pathway utilized to sense and alleviate the stress of protein folding in the endoplasmic reticulum (ER). In mammals, the UPR is mediated through three proximal sensors PERK/PEK, IRE1, and ATF6. PERK/PEK is a protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 to inhibit protein synthesis. Activation of IRE1 induces splicing of XBP1 mRNA to produce a potent transcription factor. ATF6 is a transmembrane transcription factor that is activated by cleavage upon ER stress. We show that in Caenorhabditis elegans, deletion of either ire-1 or xbp-1 is synthetically lethal with deletion of either atf-6 or pek-1, both producing a developmental arrest at larval stage 2. Therefore, in C. elegans, atf-6 acts synergistically with pek-1 to complement the developmental requirement for ire-1 and xbp-1. Microarray analysis identified inducible UPR (i-UPR) genes, as well as numerous constitutive UPR (c-UPR) genes that require the ER stress transducers during normal development. Although ire-1 and xbp-1 together regulate transcription of most i-UPR genes, they are each required for expression of nonoverlapping sets of c-UPR genes, suggesting that they have distinct functions. Intriguingly, C. elegans atf-6 regulates few i-UPR genes following ER stress, but is required for the expression of many c-UPR genes, indicating its importance during development and homeostasis. In contrast, pek-1 is required for induction of approximately 23% of i-UPR genes but is dispensable for the c-UPR. As pek-1 and atf-6 mainly act through sets of nonoverlapping targets that are different from ire-1 and xbp-1 targets, at least two coordinated responses are required to alleviate ER stress by distinct mechanisms. Finally, our array study identified the liver-specific transcription factor CREBh as a novel UPR gene conserved during metazoan evolution.
Experimental Details:
WBPaper00026830:atf-6_no_tunicamycin_1
WBPaper00026830:atf-6_no_tunicamycin_2
WBPaper00026830:atf-6_no_tunicamycin_3
WBPaper00026830:atf-6_tunicamycin_1
WBPaper00026830:atf-6_tunicamycin_2
WBPaper00026830:atf-6_tunicamycin_3
WBPaper00026830:ire-1_no_tunicamycin_1
WBPaper00026830:ire-1_no_tunicamycin_2
WBPaper00026830:ire-1_no_tunicamycin_3
WBPaper00026830:ire-1_tunicamycin_1
WBPaper00026830:ire-1_tunicamycin_2
WBPaper00026830:ire-1_tunicamycin_3
WBPaper00026830:N2_no_tunicamycin_1
WBPaper00026830:N2_no_tunicamycin_2
WBPaper00026830:N2_no_tunicamycin_3
WBPaper00026830:N2_tunicamycin_1
WBPaper00026830:N2_tunicamycin_2
WBPaper00026830:N2_tunicamycin_3
WBPaper00026830:pek-1_no_tunicamycin_1
WBPaper00026830:pek-1_no_tunicamycin_2
WBPaper00026830:pek-1_no_tunicamycin_3
WBPaper00026830:pek-1_tunicamycin_1
WBPaper00026830:pek-1_tunicamycin_2
WBPaper00026830:pek-1_tunicamycin_3
WBPaper00026830:xbp-1_no_tunicamycin_1
WBPaper00026830:xbp-1_no_tunicamycin_2
WBPaper00026830:xbp-1_no_tunicamycin_3
WBPaper00026830:xbp-1_tunicamycin_1
WBPaper00026830:xbp-1_tunicamycin_2.
Tags 1316625150_help
Method: microarray, Species: Caenorhabditis elegans, Topic: response to unfolded protein